Semiparametric mixed effects models for unsupervised classification of Italian schools
نویسندگان
چکیده
منابع مشابه
Nonlinear nonparametric mixed-effects models for unsupervised classification
In this work we propose a novel estimation method for nonlinear nonparametric mixed-effects models, aimed at unsupervised classification. The proposed method is an iterative algorithm that alternates a nonparametric EM step and a nonlinear Maximum Likelihood step. We perform simulation studies in order to evaluate the algorithm performances and we apply this new procedure to a real dataset.
متن کاملFlexible semiparametric mixed models
In linear mixed models the influence of covariates is restricted to a strictly parametric form. With the rise of semiand nonparametric regression also the mixed model has been expanded to allow for additive predictors. The common approach uses the representation of additive models as mixed models. An alternative approach that is proposed in the present paper is likelihood based boosting. Boosti...
متن کاملLASSO-type estimators for semiparametric nonlinear mixed-effects models estimation
Parametric nonlinear mixed effects models (NLMEs) are now widely used in biometrical studies, especially in pharmacokinetics research and HIV dynamics models, due to, among other aspects, the computational advances achieved during the last years. However, this kind of models may not be flexible enough for complex longitudinal data analysis. Semiparametric NLMEs (SNMMs) have been proposed by Ke ...
متن کاملStreamlined variance calculations for semiparametric mixed models.
Semiparametric mixed model analysis benefits from variability estimates such as standard errors of effect estimates and variability bars to accompany curve estimates. We show how the underlying variance calculations can be done extremely efficiently compared with the direct naïve approach. These streamlined calculations are linear in the number of subjects, representing a two orders of magnitud...
متن کاملHypothesis testing in semiparametric additive mixed models.
We consider testing whether the nonparametric function in a semiparametric additive mixed model is a simple fixed degree polynomial, for example, a simple linear function. This test provides a goodness-of-fit test for checking parametric models against nonparametric models. It is based on the mixed-model representation of the smoothing spline estimator of the nonparametric function and the vari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Royal Statistical Society: Series A (Statistics in Society)
سال: 2019
ISSN: 0964-1998,1467-985X
DOI: 10.1111/rssa.12449